If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+97-20x=0
a = 1; b = -20; c = +97;
Δ = b2-4ac
Δ = -202-4·1·97
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{3}}{2*1}=\frac{20-2\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{3}}{2*1}=\frac{20+2\sqrt{3}}{2} $
| 6x-8=5(3x-9 | | 2/x-(3/9)/(7/10)-7/4x=69 | | (x-3/4)+(2/3)=(17/12) | | -5(7+3x)=-125 | | -53b+24=-30b+9 | | -8-2x+5+10x=x+x-7 | | 3=1/3(-1)+b | | x-3/4+2/3=17/13 | | 2x^2+6x+9=7 | | 225=6.25×4x | | 30–7z=10z–4 | | 3x+21=2x+11=x | | 8(b-3)=-24+8b | | 8(c19)=62c-12)-4c | | 2x−1=−4x+232x-1=-4x+23 | | -17y=-16y-14 | | 15+2x-6x=-2+7 | | 130=x+24 | | z/2+-5=7 | | 6x=-x+30 | | 7x+31=8x=(27x+3) | | 5x-3/40=3x+2/60 | | 88=4(6+2x) | | 6m+2=98 | | 7-4=10x+14 | | 7n-6^2/3+8.46-7^2.5=69 | | 2x-6-10x=-45 | | 5X-19+2x-18=180 | | 15-(2x+6)=(7x-4) | | 5+n=-3n-10-n | | 2(3x+4)=8x+5-2x+3 | | d=15+43 |